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ABSTRACT Proper identiÞcation of insects in grain storage facilities is critical for predicting
development of pest populations and for making management decisions. However, many stored-
grain insect pests are difÞcult to identify, even for trained personnel. We examined the possibility
that near-infrared (NIR) spectroscopy could be used for taxonomic purposes based on the premise
that every species may have a unique chemical composition. Tests were conducted with 11 species
of beetles commonly associated with stored grain. Spectra from individual insects were collected by
using a near-infrared diode-array spectrometer. Calibrations were developed by using partial least
squares analysis and neural networks. The neural networks calibration correctly identiÞed .99% of
test insects as primary or secondary pests and correctly identiÞed .95% of test insects to genus.
Evidence indicates that absorption characteristics of cuticular lipids may contribute to the classi-
Þcation of these species. We believe that this technology could be used for rapid, automated
identiÞcation of many other organisms.
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SELECTING MANAGEMENT STRATEGIES for insect pests in
stored grain requires decisions that are based on mea-
surable, interacting factors (Flinn and Hagstrum
1990). These factors include type of grain, initial stor-
age time, grain temperature, grain moisture content,
storage duration, prior insecticide use, degradation
rate of protectant insecticides, and number and spe-
cies of pest insects present. Correct identiÞcation of
pest insects can be critical for management decisions.
For example, the lesser grain borer, Rhyzopertha do-
minica (F.) (Coleoptera: Bostrichidae), and the rusty
grain beetle, Cryptolestes ferrugineus (Stephens) (Co-
leoptera: Laemophloeidae), are major pests of wheat
in the Midwest grain belt (USDA 1986). R. dominica
is a primary pest and can damage intact grain kernels,
whereas C. ferrugineus is a secondary feeder and nor-
mally does not damage whole kernels. Fumigation
may be necessary or advisedwhenhigh populations of
R. dominica are present, whereas fumigation may not
be required when high populations of C. ferrugineus
are present. Unfortunately, correct identiÞcation of
many pest species found in grain, particularly the
beetles, can be difÞcult, time consuming, and can
require advanced taxonomic training. Thus, a rapid,
automated system for identifying insects could be use-
ful in making pest management decisions.

Previous research shows that near-infrared spec-
troscopy (NIRS) can rapidly and automatically detect
the presence of hidden insect larvae or external adult

insects in wheat samples (Ridgway and Chambers
1996, Dowell et al. 1998). In this report, we provide
evidence that NIRS may be used to classify rapidly
adult beetles likely to be present in grain.

NIRS should be able to differentiate between insect
species based on their absorbance characteristics be-
cause the cuticle of each insect species may have a
unique chemical composition (Lockey 1988). This
unique chemical composition causes molecules to vi-
brate at unique frequencies and absorb NIR energy
corresponding to these frequencies and overtones of
these fundamental frequencies (Murray and Williams
1990). For example, a molecule of water vibrates at
fundamental frequencies that result in absorption of
NIR energy at '2,760 nm. This absorption also can be
measured at 1st and 2nd overtones located around
1,400 and 950 nm. Thus, moisture content can be
determined by measuring the intensity of absorption
at any of these wavelengths. This same principle ap-
plies to other organic compounds such as protein,
lipids, starch, and others. Gibbs and Crowe (1991)
showed Fourier transform infrared spectroscopy
(.2,500 nm) could detect differences in hydrocar-
bons from lipid extracts obtained from different re-
gions (e.g., head, ventral abdomen) of a single insect
species, but they did not use NIRS to differentiate
between species.

The objective of our research was to determine if
NIRS (400Ð1,700 nm) could differentiate between
primary and secondary insect pests of storedproducts,
differentiate between genera within primary and sec-
ondary insects, differentiate species within a genus,
and differentiate between species across genera by
using spectra collected from individual, whole insects.

This article reports results of research only. Mention of proprietary
product does not constitute an endorsement or a recommendation by
the USDA for its use.



Materials and Methods

About 20 adult insects were selected from each of
11 beetle species commonly found in stored grain
(Table 1). These species were obtained from stock
colonies reared at 25oC and 50Ð60% RH. Composition
of laboratory diets for the different species were as
follows: diets for the ßat grain beetle, Cryptolestes
pusillus (Schönherr) (Coleoptera: Laemophloeidae);
rusty grain beetle; sawtoothed grain beetle, Oryzae-
philus surinamensis (L.) (Coleoptera: Silvanidae); and
merchant grain beetle, Oryzaephilus mercator (Fau-
vel) (Coleoptera: Silvanidae), consisted of oatmeal:
whole wheat ßour:BrewerÕs yeast:wheat germ (60:30:
5:5), (vol:vol); diets for the confused ßour beetle,
Tribolium confusum Jacquelin du Val (Coleoptera:
Tenebrionidae), and the red ßour beetle, Tribolium
castaneum (Herbst) (Coleoptera: Tenebrionidae),
consisted of whole wheat ßour and BrewerÕs yeast
(95:5), (vol:vol); the lesser grain borer was reared on
whole wheat lightly dusted with wheat ßour; the
larger grain borer, Prostephanus truncatus (Horn)
(Coleoptera: Bostrichidae), and the maize weevil,
Sitophilus zeamais Motschulsky (Coleoptera: Curcu-
lionidae), were reared on whole-kernel corn; and the
rice weevil, Sitophilus oryzae (L.) (Coleoptera: Cur-
culionidae), and granary weevil, Sitophilus granarius
(L.) (Coleoptera: Curculionidae), were reared on
hard red winter wheat.

The live insects were individually placed in a black
V-shaped trough (12 mm long, 10 mm wide, 5 mm
deep) and illuminated with white light via a Þber
bundle (8 mm diameter) positioned 13 mm from the
top of the trough and oriented 45o from vertical. A
reßectance probe (2-mm diameter) was oriented ver-
tically 9.5 mm from the top of the trough. The reßec-
tance probe carried the reßected energy to a spec-
trometer (DA7000, Perten Instruments, SpringÞeld,
IL). The diode-array spectrometer measures visible
(400Ð750 nm) and NIR (750Ð1,700 nm) reßectance at
a rate of 30 spectra per second. Procedures included
collecting a baseline, collecting 8 spectra from each of
the insects, and averaging the 8 spectra for each insect.
This resulted in spectra from '275 individual insects.
Collecting and averaging the 8 spectra from each in-

sect took ,1 s. The baseline consisted of collecting a
spectrum of the empty trough to use as a reference. A
new baseline was collected after each group of '40
insects.

Data were analyzed using partial least squares re-
gression (PLS) (Galactic Industries 1996) and a back-
propagation neural network (NeuralWare 1995). Cor-
relation plots (r2) and factors indicating which
wavelengths contribute to classiÞcations in 2-way
comparisons were obtained using PLS (Murray and
Williams 1990). Two-way comparisons were made us-
ing PLS by assigning a value of 1 or 2 to the compar-
isons of interest (for example, primary 5 1, second-
ary 5 2).

The neural network analysis gave classiÞcation per-
centages for all 2-way as well as higher-order com-
parisons (up to 11 species compared). The neural
network had 1 hidden layer, 100 input nodes, and 2, 3,
or 11 outputs. The 100-input nodes corresponded to
the absorbance values at 10 nm increments from 700
to 1,700 nm. The outputs corresponded to the com-
parisons being tested. The learning rate, momentum,
and learning events used in the neural network were
#0.6, 0.4Ð0.5, and 10,000Ð30,000, respectively. The
learning rate, momentum, learning events, and num-
ber of hidden layers affect the neural network accu-
racy and speed (Hecht-Neilsen 1989). For both the
PLS and neural network analyses, even-numbered
samples served as training or calibration sets, whereas
odd samples were used for testing calibration models.

Table 2 shows the comparisons tested. The classi-
Þcation of paramount interest was primary versus sec-
ondary insects because management strategies for
these 2 types of insects may be quite different and
because knowing whether an insect is a primary or
secondary pest is usually sufÞcient for making a man-
agement decision. In addition, insects were classed
into their respective genera (2 or 3 comparisons)
within the primary and secondary groupings, and
classed into species within a genus (2 or 3 compari-
sons).AÞnal comparison sought toclassify insects into
their respective species independent of previous
groupings (11 comparisons).

Table 1. Stored-grain beetles (Coleoptera) used in the neural network and partial least squares analysis of NIR spectra when comparing
species, genera, and primary versus secondary pests

Code Common name ScientiÞc name Family

Secondary Pests

FGB Flat grain beetle Cryptolestes pusillus (Schönherr) Laemophloeidae
RGB Rusty grain beetle Cryptolestes ferrugineus (Stephens) Laemophloeidae
SGB Sawtoothed grain beetle Oryzaephilus surinamensis (L.) Silvanidae
MGB Merchant grain beetle Oryzaephilus mercator (Fauvel) Silvanidae
CFB Confused ßour beetle Tribolium confusum Jacquelin du Val Tenebrionidae
RFB Red ßour beetle Tribolium castaneum (Herbst) Tenebrionidae

Primary Pests

LGB Lesser grain borer Rhyzopertha dominica (F.) Bostrichidae
GB Larger grain borer Prostephanus truncatus (Horn) Bostrichidae
GW Granary weevil Sitophilus granarius (L.) Curculionidae
RW Rice weevil Sitophilus oryzae (L.) Curculionidae
MW Maize weevil Sitophilus zeamais Motschulsky Curculionidae
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We reasoned that the insect cuticle likely would
absorb most of the NIR energy. To test this, the spec-
tral absorbance of rice weevil cuticular lipids, ex-
tracted with a chloroform (CHCl3) rinse and impreg-
natedontoÞlterpaper,wasmeasuredandanalyzed for
comparison with PLS correlations and factors. Lipids
were extracted by placing 26.4 g of rice weevil adults
in a 500-ml ßask, adding 200 ml CHCl3, and gently
swirling for 3 min at room temperature. The extract
was Þltered through Whatman no. 1 Þlter paper, con-
centrated in a rotoevaporator, and an aliquot contain-
ing 1 mg of lipid was applied to a Whatman no. 1 Þlter
paperdisk(6.4mmdiameter).The lipidconcentration
was 0.78 mg/cm2 of Þlter paper.

Spectra of ground samples of cuticle from 5th-instar
tobacco hornworm larvae, Manduca sexta (L.)(Lepi-
doptera: Sphingidae), and the b(1Ð4)-linked hexa-
saccharide of 2-acetamido-2-deoxy-D-glucopyrano-
side derived from crab chitin (Sigma, St. Louis, MO)
were obtained to determine if their absorbance peaks
are identicalor similar to thewavelengths founduseful
for detection.

To test the robustness of NIR calibrations devel-
oped using the laboratory stock colonies, insects from
each of 3 speciesÑthe foreign grain beetle, Ahasverus
Advena (Waltl) (Coleoptera: Silvanidae); C. ferrug-
ineus; and R. dominicaÑwere obtained from samples
ofwheat frombins inKansas andclassedusing theNIR
system. This testing occurred 6 mo after the original
calibrations.

Results and Discussion

The neural network classiÞed 99.1% of primary and
secondary insects correctly, whereas PLS had a lower
classiÞcation percentage (96.4%) (Table 2). Both cal-
ibrations classiÞed insects by genus within primary
and secondary groupswith an accuracyof $95%.Clas-
sifying insect specieswithinagenus resulted incorrect
classiÞcations ranging from 55 to 100%. In an 11-way
classiÞcation among all species and using the neural
network calibration, classiÞcation accuracies ranged
from 30 to 100% (Table 3). The worst classiÞcations
were the sawtoothed grain beetle versus merchant

Table 2. Accuracy of classifying insects species with calibrations developed by using partial least squares (PLS) regression and a neural
network (NN)

Comparisona n
% correct no. PLS

factorsNN PLS

Primary vs Secondary Insects

(FGB, RGB, SGB, MGB, RFB, CFB) vs
(GW, RW, MW, LGB, GB)

110 99.1 96.4 8

Families or genera within primary or secondary

(GW, RW, MW) vs (LGB, GB) 60 100 100 10
(FGB, RGB, SGB, MGB) vs (RFB, CFB) 60 95 100 6
(FGB, RGB) vs (SGB, MGB) vs (RFB, CFB) 60 96.7 Ñ Ñ

Species within genera or family

GW vs RW vs MW 30 83.3 Ñ Ñ
LGB vs GB 20 100 100 6
FGB vs RGB 20 90 90 5
SGB vs MGB 20 55 60 3
RFB vs CFB 20 80 100 13
GW vs RW 20 100 85 3
GW vs MW 20 95 100 5
RW vs MW 20 75 95 5
All Species 110 71 Ñ Ñ

a See Table 1 for species codes.

Table 3. Neural network results from an 11-way classification

Actual
species

Predicted speciesa

FGB RGB SGB MBG CFB RFB LGB GB GW RW MW

FGB 90 10 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ
RGB 40 50 10 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ
SGB Ñ Ñ 30 30 Ñ Ñ 40 Ñ Ñ Ñ Ñ
MGB Ñ Ñ 20 70 Ñ Ñ 10 Ñ Ñ Ñ Ñ
CFB Ñ Ñ Ñ Ñ 60 40 Ñ Ñ Ñ Ñ Ñ
RFB Ñ Ñ Ñ Ñ 20 80 Ñ Ñ Ñ Ñ Ñ
LGB Ñ Ñ Ñ Ñ Ñ Ñ 100 Ñ Ñ Ñ Ñ
GB Ñ Ñ Ñ Ñ Ñ Ñ Ñ 90 10 Ñ Ñ
GW Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ 100 Ñ Ñ
RW Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ 10 70 20
MW Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ 10 90

See Table 1 for species codes.
a Results are the percentage of actual species classiÞed into each of the 11 species categories.
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grain beetle (55% correct) in the pair-wise compari-
son (Table 2) and the sawtoothed grain beetle versus
all others (30% correct) in the 11-way classiÞcation
(Table 3). Thus, the calibrations developedusing neu-
ral network and broadest groupings (primary versus
secondary) resulted in the highest classiÞcation ac-
curacy.

When examining the effect of wavelength regions
on classiÞcation accuracies, the PLS results showed
that data within the visible wavelength region did not
improve classiÞcations or reduce the number of fac-
tors needed for calibrations (data not shown). Fewer
factors are desirable because less information is
needed to explain variability in the data. For example,
for the primary versus secondary comparison, the cal-
ibration models developed using either the NIR or
NIR plus visible wavelengths both resulted in 96.4% of
insects correctly classed. The number of factors
needed for the NIR and NIR plus visible region cali-
brations were 8 and 17 factors, respectively. Fewer
factors when using only the NIR region likely oc-
curred because there is little visible difference be-
tween many of the insect categories. Thus, including
the visible region contributed no additional useful
information.

Further information about wavelengths contribut-
ing to classiÞcations can be derived from PLS corre-
lation plots and factor weights. Correlation plots show
that wavelengths of 450Ð700 nm, 900Ð1,400 nm, and
1,500Ð1,700 nm were more highly correlated to insect
species than other wavelengths (Fig. 1).

The Þrst 2 factors of the PLS comparisons showed
that wavelengths with the most weight occurred at
'1,130, 1,325, and 1,670 nm. The 3rd and 4th factors
hadpeaks around1,420nm.Fig. 2 showsplots for 1 and
3 PLS factors. When comparing the wavelengths from
the Þrst 2 factors with absorbances of various func-
tional groups, the absorbances correspond closely to
the1st and2ndovertonesofCH3, and toa lesser extent
CH2 (Murray and Williams 1990). The CH combina-
tion overtones correspond with the 3rd and 4th fac-

tors. These absorbance regions also generally agree
with those reported by Ridgway and Chambers
(1996), but at overtones found at longer wavelengths
(1,700 nm) when detecting the presence of insects in
grain.

CH3 and CH2 are common chemical moieties in
components that make up the epicuticular lipids in
insects. Insect cuticular lipids are composed mainly of
fatty acids, alcohols, esters, glycerides, sterols, alde-
hydes, ketones, and hydrocarbons (Lockey 1988).
Long-chain hydrocarbons often are major compo-
nents of cuticular lipids in insects, but their concen-
tration can vary widely, from 3 to nearly 95% of the
total lipid. Hydrocarbons make up '32% of the total
surface lipid in rice weevils (Baker et al. 1984). Fig. 3
shows thedifference spectra calculatedby subtracting
a spectra of rice weevil cuticular lipid on Þlter paper
(0.78 mg/cm2) from the spectra of Þlter paper treated
with solvent only. This difference spectra with peaks

Fig. 1. Correlation spectra for primary versus secondary
stored-grain insects.

Fig. 2. PLS factor plots indicating wavelengths contrib-
uting to insect classiÞcations.

Fig. 3. Spectra of cuticular lipids extracted from adult
rice weevils.
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occurringat theCH3overtones('1,130and1,670nm)
supports the conclusions indicated by the PLS factors.
Thus, each insect species appears to have molecules
with unique vibrational characteristics that may be
caused by the unique mixture of hydrocarbon mole-
cules and other lipid classes.

Spectra of the chitin hexamer and ground insect
cuticle had absorbance peaks around 1,400Ð1,500 nm.
Neither the correlation plots nor the factor weight
plots indicated that this wavelength range was useful.
Thus, it appears that the NIR system may have de-
tected differences in cuticular lipids between species,
but that the chitin within the cuticle did not contrib-
ute to classiÞcations. Other compounds contained in
insect cuticle that could be contributing to classiÞca-
tion include protein, catachols, pigments, and oxalates
(Kramer et al. 1995).

When classifying Þeld insects using calibrations de-
veloped from laboratory stock colonies, 100% of the C.
ferrugineuswerecorrectlyclassedas secondary insects
and in the correct genus. The A. advena were not
included in the original calibration; however, 80%
were correctly classed by the model as secondary
insects. For the R. dominica, 67% were correctly
classedasprimary insects.Of theR.dominicacorrectly
classed as primary, 83% were placed in the correct
genus.Of thoseplaced in thecorrect genus, 100%were
placed in the correct species. The calibration devel-
opedusing laboratory colonies appears to classify Þeld
insects with reasonable accuracy, especially consid-
ering that the conÞguration for illuminating and view-
ing insects had changed between the original calibra-
tion and subsequent testing of Þeld insects.

Insects that enter traps can be counted electroni-
cally (Shuman and Weaver 1996). However, integra-
tion of Þltered NIR sensors within an insect trap could
provide an automated means of not only counting the
trapped insects but also identifying the insect to type
or species. This type of timely information concerning
pest insect populations in stored grainwould certainly
be an advantage when implementing control strate-
gies.

Computer vision, which uses digitized images from
cameras and provides information about object color,
shape, and size, could provide an alternate means of
identifying insect species. Although computer vision
could likely be integrated into an insect trap, it poses
additional problems of proper lighting, shadows, in-
sect presentation, image segmentation (Zayas and
Flinn 1997).

In summary, our results showed that NIR spectros-
copy coupled with PLS or neural network spectral
analysis techniquescanbeused toclassify the11 insect
species examined in this study, with primary and sec-
ondary insects being classedwith .99%accuracy. The
unique composition of cuticular lipids in the different
beetles may be partially responsible for the classiÞ-
cations achieved with this system. Although we were

not able to classify all tested insects to the species level
with high accuracy, identiÞcation to species is not
necessarily required for making pest management de-
cisions in grain storages. IdentiÞcation to genus or
identiÞcation as a primary or secondary pest is usually
sufÞcient. In addition to stored grain insects, we be-
lieve that this technology could be used for rapid,
automated identiÞcation of many other organisms.
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